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ABSTRACT 
 
 Particulate size distributions offer the scientist impor-
tant clues about the mechanism(s) responsible for their 
formation. These distributions are complex, often being the 
combination of several subpopulations that bear the signa-
ture of specific fragmentation and particulate transport 
processes. Historically, such distributions have been char-
acterized by some empirical distribution law such as the 
lognormal or Weibull distributions, but such characteriza-
tions provide little insight into sample origins. We have 
developed a sequential fragmentation/transport theory 
(SFT) that predicts particulate mass/size distributions, 
based on idea that fragmentation and transport mechanisms 
operate in a sequential fashion, breaking up a parental mass 
into ever smaller ensembles of daughter particles and then 
sorting them according to mass. Integration of the results of 
each step in a given sequence predicts a distribution bear-
ing resemblance to the lognormal and Weibull distribu-
tions. The free parameter for fragmentation (γ) and its ana-
log for transport (τ) describe the mass sensitivity for solu-
tions to Navier-Stokes equations. In this fashion, distribu-
tions can be predicted for a certain fragmentation and 
transport mechanism, and by inverse law, these mecha-
nisms may be constrained by measurement of size data. In 
describing SFT, we show its application to experimental 
debris from thermite/water explosions and volcanic erup-
tions in which the thermodynamic efficiency of water/melt 
interaction is directly related to γ. Our conclusion based on 
preliminary application of SFT is that intense multiphase 
vapor explosions involve fragmentation/propagation 
mechanisms whose character is dependent on the mass 
ratio of water and melt interacting. 
 
I. INTRODUCTION 
 
 From the perspective of a volcanologist, one of the 
most distinguishing features of hydrovolcanic explosions 
(those caused by interaction of hot magma with water) is 
the very fine-grained character of ejected materials (called 

tephra). Hydrovolcanic tephra are composed of quenched 
magma fragments and pieces of rock excavated during 
crater formation, and in many cases, the average diameters 
of these tephra are several tens of micrometers. This size 
range can be contrasted to tephra from magmatic explo-
sions (those cause by rapid decompression of a volatile 
charged magma), which commonly show average diame-
ters from several hundreds of micrometers to several mil-
limeters. This general observation has led numerous re-
searchers to do extensive size-distribution analyses of hy-
drovolcanic tephra to better understand the mechanisms 
involved in melt fragmentation. The main problem with 
this work is that particulate size distribution analysis has 
traditionally been an empirical process, limited to statisti-
cal treatment based on assumptions of various distribution 
laws such as the lognormal, Weibull, Rosin-Rammler, and 
more recently fractal. 
 
 In this paper, We discuss the development of the se-
quential fragmentation/transport theory (SFT) for particu-
late analyses and will attempt to show how its basis in 
physical theory allows size data inversion to constrain 
fragmentation mechanisms. 
 
II. SEQUENTIAL FRAGMENTATION/TRANSPORT 
 
 A fundamental observation of fragmentation processes 
is that they generally follow a sequence of events involving 
crack nucleation, growth, and branching, during repetitive 
material stress and strain. For example during brittle fail-
ure, stress waves and their reflections propagate through a 
material many times during their decay, or in the case of 
hydrodynamic fragmentation, repeated growth and de-
tachment of surface instabilities take place. This observa-
tion has led us to model fragmentation as an integral proc-
ess in which a parental mass produces an ensemble of 
daughter fragments of various sizes, each daughter frag-
ment then repeatedly becoming the parent for further 
daughter ensembles (Fig. 1). Conserving total mass, this 
integral formulation is 
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where n(m) is the number distribution in units of particles 
per unit mass of mass m between m and m+dm, c is con-
stant, n(m′ ) is the number distribution of parental mass m’, 
and ƒ(m′→ m) is the single-event particle distribution func-
tion and expresses the distribution in mass, m, arising from 
the fragmentation of a single, more massive particle of 
mass m′. In this fashion, Equation (1) represents the sum-
ming of all contributions to the distribution of m from the 
fragmentation of all particles of mass m′ > m. 
 
 To solve Equation (1) we have assumed that fragmen-
tation mechanisms are mass sensitive; in other words that 
solutions to fragmentation mechanisms will always show a 
mass dependency. We have chosen to express this mass 
dependency as a power law from consideration of previous 
theoretical work.1 Brown2 set the constant c = m-1 such that 
the transfer function is 
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Here, m1 denotes a mass related to the average distribution 
mass and γ is a free parameter where -1>γ≤0. Inserting 
Equation (2) into Equation (1), we have 
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The solution to Equation (3) is 
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where Equation (4) has been normalized to the total num-
ber of fragments NT : 

 
Figure 1. Schematic illustration of sequential fragmentation. 
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Brown and Wohletz3 have shown Equation (4) to be the 
Weibull4 distribution in particle number. 
 
 Equation (4) is a distribution with some basic relation-
ships. The free parameter γ models the maturity of the 
fragmentation process. Where γ is close to -1, SFT models 
sudden fragmentation processes that involve only one or a 
few stages of breakage, such as the passage of a single 
compression/rarefaction stress pair leading to fragmenta-
tion, a situation that creates a broad, poorly defined distri-
bution of fragment sizes. As γ increases, SFT models frag-
mentation processes that represent the culmination of many 
individual breakage events, such as the repeated growth 
and detachment of instabilities at a fragment surface; with 
increasing γ the resulting distribution has a much greater 
central tendency (lower dispersion) and finer average size. 
Furthermore, Brown and Wohletz3 have shown that 
through the form of Equation (2), Equation (4) is fractal 
with 3γ being the fractal dimension.5 In addition, by divid-
ing Equation (4) by Equation (5), one obtains a cumulative 
distribution of the Rosin-Rammler6 form in particle num-
ber. 
 
 Because particle size data is often measured as the 
mass of particles in a bins of fixed size ratio, we can ex-
press Equation (4) as a mass distribution, mn(m): 
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Alternatively, if we make use of a logarithmic scale in m, 
say u ≡ ln m, noting that n(u)du = n(m)dm, then mn(m) = 
n(u) Thus mn(n) also gives the number of particles per unit 
natural logarithm in m. Furthermore, if mn(m) is the num-
ber of particles per unit logarithm in m, and the mass of 
each particle is m, then the total mass of particles per unit 
logarithm is just m2n(m). Thus 
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This distribution is shown in Figure 2 where it is compared 
to the lognormal distribution: 
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where λ (m) is the mass, m, distribution in units of mass per 
unit ln interval, m3 is a constant that allows variable posi-
tioning of the curve, and σ is the standard deviation in ln m 
units. 
 
 The quantity m2n(m) is precisely what is measured 
when a sample of particles is sifted through a series of 
sieves of decreasing mesh size where the mesh sizes be-
tween any two adjacent sieves is a fixed ratio. As Brown 
and collaborators noted1,7, the form m2n(m) closely resem-
bles the lognormal distribution8 (see Fig. 2), a distribution 
that has enjoyed a long history of successful, empirical use; 
we note the lognormal distribution has a mathematical ba-
sis9, but no physical basis. 

 
Figure 2. Plot of Equation (7) expressing m2n(m) vs log m compared to 
lognormal curve [Equation (8)]. The standard deviation σ=2 for the 
lognormal curve closely matches γ=-0.8 for the sequential fragmentation 
curve (m1 and m3 are constants related to the average mass of each distri-
bution). 
 

 The gathering of data through a series of sieves with a 
fixed size ratio between them is standard procedure in 
many fields; for example, in the analysis of geological ma-
terials such as sand and volcanic ash. For this procedure, 
the mass left on each sieve ∆M, is recorded in a logarith-
mic bin of width ∆φ where φ ≡ -log2(� /�0), and where �0 ≡ 
1 mm. It can easily be shown that 
 

 
dM

d
m n m

φ
= − 3 2 2ln ( )    . (9) 

 
The negative sign and the ln 2 originate from the definition 
of the φ-scale, and the 3 provides the conversion from mass 
to size (assuming spherical particles of equal density). An 
illustration of the effect of varying γ in Equation (7) is 
shown by Figure 3 where distributions of different γ values 
are plotted as dM/dφ vs φ from Equation (9). This illustra-
tion shows that as γ increases (signifying that the particles 
are undergoing further processing), the distribution be-
comes finer in particle size and more peaked. 
 
 As in many fields, the lognormal distribution has been 
typically used to describe the data because it is a conven-
ient approximation to the shape of the data such as dM/dφ. 
Although application of the lognormal distribution to this 
type of data is traditional, its satisfactory representation of 
the data may be simply fortuitous. In contrast, we believe 
that application of Equation (18),giving m2n(m), is a more 
proper, physically based formulation to apply. An example 
of the use of m2n(m) for soot particle size data10, using the 
mass to size conversion of Equation (20), is shown in Fig-
ure 4. 

 
Figure 3. Plot of m2n(m) distributions in the form of dM/dφ vs φ, where 
dM/dφ is defined by Equation (20), and φ = -log2(diameter in mm); the 
reader will recall that all log scales are proportional, and that the minus 
sign simply places the coarse particles to the left and the fine particles to 
the right. This plot shows the effect of varying γ in Equation (18), where 
increasing γ shifts the peak of the distribution to the right (finer particle 
sizes) and makes the distribution more peaked. Note that where γ = -1.0 
the distribution is flat. 
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Figure 4. An example of the use of m2n(m) for soot particle data from 
Medalia and Heckman10. In this plot the m2n(m) curve crosses every data 
point but one, whereas the lognormal curve gives a less satisfactory fit. 
Each curve was best-fit to data by least-squares regression analysis; the 
m2n(m) curve explains 96% of the sample variance while the lognormal 
curve satisfies only 88%. As in Figure 4, data and m2n(m) are expressed 
in distribution wt% per 1/2 phi bins. 
 
 
 A fundamental sampling problem inherent in volca-
nological studies is that it is difficult if not impossible to 
obtain a sample that has not been modified by a transport-
ing agent. In this light, the sample size distribution reflects 
as much, and in many cases, more processing by transport 
than by explosive fragmentation. Transport not only sorts 
particles by size via gravitational and drag forces, it can 
cause particle collisions that further cominute the sample. 
Wohletz et al.7 analyzed this problem by again considering 
transport effects as a sequential process (Fig. 5) as in Equa-
tion (1): 
 

 n x m c n x m p dx dm

x

m

( , ) ( ' , ) ( ) ' '=

−

∫∫2
0

0

ξ

ξ

  . (10) 

 
In this equation, n(x,m) is the particle number distribution 
in the length interval between x and x+dx and mass inter-
val between m and m+dm. The function p(ξ) is the prob-
ability that a particle transported from the source x′ will be 
sampled at position x: 
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where ξ is the range of a particle related to its mass by  
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Figure 5. Schematic illustration of sequential transport. 
 
 
The free parameter τ is analogous to γ is Equation (2) and 
represents the mass dependency of the transport mecha-
nism (e.g. ballistic, suspended, saltating, tractive). Equa-
tion (10) has the solution7 in the range of x and m of inter-
est of 
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similar to Equation (7) where K is a normalizing constant. 
With size frequency data reported by the φ-scale, Equation 
(13) becomes 
 

 
dM

d
K

x

oφ ξ τ

τ
= −

+















+

2
6

3 1

1
�

�
exp

( )
   . (14) 

 
In Equation (14), K2 is unity for size-frequency histogram 
data and x/ξo as justified by Wohletz et al.7  
 
 Because fragments sampled from explosions have 
varying shapes and density, the assumption of constant 
density and spherical shape makes the solution given in 
Equation (14) of limited practicality. Wohletz et al.7 show 
that conversion particle diameters to masses follows 
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where S is a shape factor typically defined as S = P2/(4πA) 
for which P is the particle perimeter and A is its area. Dif-
ferentiating the logarithm of Equation (15), we find that 
Equation (9) becomes 
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such that Equation (14) becomes 
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which predicts that the size-frequency distribution of a 
sample composed of fragments of varying shape and den-
sity will be the sum of at least three subpopulations show-
ing K3, KS, and Kρ fraction of the total with SFT free pa-
rameters τ, τS, and τρ respectively. 
 
III. Application of SFT to Particulates Sampled from 

Intense Multiphase Interactions 
 
 We have investigated samples from a broad range of 
fragmentation processes including the stellar initial mass 
function, galactic luminosities, asteroids, infalling extrater-
restrial material (meteoritic), iron ground in a ball mill, 
high explosive aerosolization, water/thermite explosions, 
fly ash from coal-fired and wood-burning generating 
plants, and geologic samples (windblown dust, water-laid 
sands, and volcanic ash). Many of these examples have 
been documented by Brown2, but it is those samples from 
water/thermite explosions11,12 and volcanic eruptions13 that 
are of greatest interest for this forum. In analysis of these 
samples, we note that few, if any, represent distributions 
unaltered by transport processes, such that application of 
SFT by the form given in Equation (17), requires consid-
erations of both the effects of fragmentation and transport 
on SFT free parameters. 
 
 As a first example, we explore samples taken from 
thermite/water volcanic analog experiments.11,12 Due to the 
fact that these experiments involved a range of mechanical 
designs, only several can be compared as having similar 

sample bias. In Figures 5, we show size frequency distribu-
tions for three similar experiments. Note that 6 subpopula-
tions are identified in each experimental sample with indi-
vidual subpopulations showing similar distribution parame-
ters in each sample. These subpopulations derive from 
variations in particle bulk density and shape, which can be 
related to the interplay of several fragmentation mecha-
nisms. For each of these experiments, Figure 6 shows the 
average fragmentation parameter (γ) bearing a direct rela-
tionship to the observed mechanical conversion ratio12 (ex-
pressed as the percentage of initial thermal energy con-
verted to mechanical energy measured). This relationship 
shows γ increasing linearly with conversion ratio, meaning 
that experiments producing greater measurable explosive 
energy involve a fragmentation mechanism that is more 
highly evolved. Wohletz et al.7 predicted this behavior 
based on theoretical relationships among fragment mass, 
surface areas, and resulting heat transfer rates. Brittle 
fragmentation (thermal shattering) of glassy substances 
results in lower γ values and surface area per unit mass and 
heat transfer rates than do hydrodynamic (ductile) defor-
mation processes; hence an expected increase in γ with 
explosive efficiency. A more detailed discussion of hydro-
volcanic fragmentation mechanisms is given by Wohletz14, 
based on considerations of fragment size and shape. 

 
Figure 5. Size-frequency plots of three bulk samples from thermite/water 
volcano experiments.12 Total distributions are shown in bold curves and 
subpopulations in thin curves. The subpopulation parameters of mode, 
dispersion (γ), and fraction for samples LOF-1, LOF-11, and LOF-13 are 
respectively: Subpopulation 1:-1.82, -2.79, -2.15 (mode), -0.40, 1.00, -
0.52 (dispersion), and 0.04, 0.08, 0.07 (fraction); Subpopulation 2: -
0.51, -0.60, -0.76 (mode), -0.59, -0.83, -0.91 (dispersion), and 0.06, 0.24, 



  Wohletz and Brown    7 

0.11 (fraction); Subpopulation 3:0.58, -0.70, 0.69 (mode), -0.50, -0.55, 
0.42 (dispersion), and 0.18, 0.15, 0.05 (fraction); Subpopulation 4:1.86, 
1.97, 1.97 (mode), -0.68, -0.77, -0.65 (dispersion), and 0.56, 0.34, 0.25 
(fraction); Subpopulation 5:3.65, 3.43, 3.17 (mode), -0.70, -0.75, -0.80 
(dispersion), and 0.12, 0.14, 0.447 (fraction); Subpopulation 6: 4.49, 
4.67, 4.64 (mode), 0.04, 0.05, 0.09 (dispersion), and 0.04, 0.05, 0.09 
(fraction). Note mode sizes given in phi scale [φ ≡ -log2(�/�0)] shown on 
the plots. 
 

 
Figure 6. Plot of weighted average γ (gamma) value vs conversion ratio 
for experimental samples shown in Figure 5. For experiments involving 
little or no water with very low conversion ratios, gamma is expected to 
be less than -0.83. 
 
 
 Because we have so few experimental data to test the 
above hypothesis, we compare the experimental trends to 
data from the Neapolitan Yellow Tuff studied by Wohletz 
et al.15 for which conversion ratios were constrained by 
calculated mechanical energies necessary to emplace the 
tephra. For these calculations, thermodynamic relationships 
based on adiabatic expansion of steam were used in the 
volcanic case, so the same conversion calculations were 
applied to the experimental data, which are somewhat 
higher than those calculated by measured mechanical ener-
gies shown in Figure 6. The plot of γ vs conversion ratio in 
Figure 7 shows a remarkable correlation in which γ in-
creases linearly with conversion ratio. Magmatic samples 
(those having experience little or no fragmentation by con-
tact with external water) are projected to have γ values near 
-0.9 while those hydrovolcanic samples resulting from en-
ergetic vapor explosions have γ values as high as -0.7. We 
note that the γ values for this set of data do not go as high 
as those from the experiments (Fig. 6), and we attribute this 

discrepancy to the unconstrained effects of tephra transport 
for which ballistic and traction flow cause an overprint of 
lower γ values. Still these results are compelling and sug-
gestive for tests to be done on more controlled sets of data. 
 
 In further consideration of fragmentation mechanisms, 
Wohletz14 showed experimental data and heat flux calcula-
tions suggesting that water/melt explosions showed 
increasingly finer grained ejecta debris with increasing 
explosivity. If the data shown in Figure 7 demonstrating 
increasing γ values with increasing conversion ratios 
(explosivity), then there should also be a similar increase in 
γ values with sample mode (which increases with de-
creasing average size on the phi scale). Indeed, this rela-
tionship is indicated by data both from the Neapolitan 
Yellow Tuff and tephra from the recent eruptions (1977) of 
the Ukinrek maar volcano16 in Alaska (Figure 8). However, 
we note separate trends in the data for these two volcanoes, 
which bear out the fact that Ukinrek involved much more 
water-rich eruptions and smaller magma volumes (<<1 
km3) than did the Neapolitan Yellow Tuff (>35 km3). The 
data in Figure 8 only show samples with modes finer than 
about 1 mm (0 φ), the empirical division by size between 
magmatic and hydrovolcanic fragmentation described by 
Wohletz.14  
IV. Conclusions 
 
 Sequential fragmentation/transport theory (SFT) pro-
vides a method to predict fragment mass/size distributions 
for particulate samples derived from a variety of fragmen-
tation and transport processes. Its derivation is based in 
physical laws and it allows incorporation of various solu-
tions of the Navier-Stokes equations in determination of 
mass distributions. At this point, we have only a general 
idea of mass sensitivity involved in various fragmentation 
and transport processes, but we have data that support the 
application of SFT in order to learn more about fragmenta-
tion in water/melt explosions where debris samples can be 
obtained. 
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Figure 7. Plot of weighted average γ (gamma) value vs adiabatic conver-
sion ratios for experimental and tephra (ash) samples from the Neapolitan 
Yellow Tuff.15 
 

Figure 8. Plot of weighted average γ vs weighted average sample mode 
for samples from the Neapolitan Yellow Tuff (NYT) and Ukinrek maar 
volcano16 define two distinct trends of increasing γ with mode. 
 The SFT free parameter γ describes the mass sensitiv-
ity of the given fragmentation processes, while for trans-
port processes, the analogous free parameter is termed τ. It 

is this parameter that must be evaluated from theory to 
predict a distribution. The parameter varies from -1 (where 
a distribution is flat) to more positive values as fragmenta-
tion/transport processes require more repeated steps (e.g. 
repeated stressing and unloading events, repeated growth 
and detachment of instabilities, repeated transport and 
deposition of a fragment population). With increasing γ or 
τ, the distribution becomes finer and more peaked. 
 
 With the few experimental data we have analyzed, 
there appears to be an increase in sample size distribution γ 
values with an increase in vapor explosion thermal effi-
ciency. This trend is also shown in samples of volcanic ash 
produced by hydrovolcanic eruptions for which γ values 
increase with increasing degree of external water interac-
tion. We then conclude that intense multiphase vapor ex-
plosions involve various fragmentation/propagation 
mechanisms that depend on the mass ratio of water and 
melt interacting. 
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